Model Theory

Sheet 5

Deadline: 20.11.25, 2:30 pm.

Exercise 1 (8 points).

Denote by $2^{<\omega}$, resp. 2^{ω} , the set of all finite, resp. infinite, sequences of 0's and 1's. We denote the concatenation of s and t in $2^{<\omega}$ by $s \smallfrown t$. Consider a language $\mathcal{L} = \{P_s \mid s \in 2^{<\omega}\}$ consisting solely of unary predicates P_s for each such sequence s in $2^{<\omega}$. Let \mathcal{K} be the class of \mathcal{L} -structures \mathcal{A} whose universe is $P_{\emptyset}^{\mathcal{A}}$ and such that, for s in $2^{<\omega}$, the set $P_s^{\mathcal{A}}$ is the disjoint union of the subsets $P_{s>0}^{\mathcal{A}}$ and $P_{s>0}^{\mathcal{A}}$, both of which are non-empty.

a) Give an axiomatization T of the class K and show that T is consistent.

Hint: There is a suitable uncountable model whose elements are functions.

- b) Given a model \mathcal{A} of T and an element f of 2^{ω} , show that there exists an elementary extension \mathcal{A}' of \mathcal{A} such that $\bigcap_{n\in\omega}P_{f|_n}^{\mathcal{A}'}$ contains infinitely many elements, where $f|_n$ is the restriction of f to the first n many entries.
- c) Using b), show that T is complete and has quantifier elimination.
- d) Describe (informally) all types in $S_1(T)$ and show that no type in $S_1(T)$ is isolated.
- e) Conclude from e) that T cannot have a prime model.

Exercise 2 (4 points).

Consider the theory DLO of dense linear orders without endpoints in the language $\mathcal{L} = \{<\}$. Recall that DLO is complete and with quantifier elimination. Fix some natural number $n \geq 1$.

a) Show that every type in $S_n(DLO)$ is isolated.

Let now T be an arbitrary complete theory such that every type in $S_n(T)$ is isolated.

b) Show that $S_n(T)$ must be finite.

Exercise 3 (3 points).

Recall that a subset Y of a topological space X is dense if $Y \cap U \neq \emptyset$ for every non-empty open set U in X.

Now consider a countable consistent theory T in the language \mathcal{L} . Show that the type space $S_n(T)$ has the *Baire property*: for any countable family $(U_m)_{m\in\mathbb{N}}$ of open dense subsets of $S_n(T)$, the intersection $\bigcap_{m\in\mathbb{N}} U_m$ is dense (and thus non-empty).

HINT: Compactness (**surprising!**) and 0-dimensionality.

(Please turn the page!)

The exercise sheets can be handed in in pairs. Submit them in the mailbox 3.19 in the basement of the Mathematical Institute.

Exercise 4 (5 points).

Suppose there is a partial elementary map $f: C \twoheadrightarrow D$ between two substructures \mathcal{C} of \mathcal{A} and \mathcal{D} of \mathcal{B} in the language \mathcal{L} . Fix some $n \geq 1$ in \mathbb{N} .

The map f induces a map as follows:

- a) Show that the map F is well-defined.
- b) Show that F is bijective.
- c) Show that F is continuous. Conclude that F is a homeomorphism of topological spaces.